AlAA 2003-4229

AUTOMATED CFD PARAMETER
STUDIES ON DISTRIBUTED
PARALLEL COMPUTERS

Stuart E. Rogers, Michae J. Aftosmis,
Shishir A. Pandya and Neal M. Chaderjian
NASA Ames Research Center

Moffett Field, California

Edward T. Tgnil and Jasim U. Ahmad
Eloret Institute
Moffett Field, California

16th AIAA Computational Fluid Dynamics
Conference
23-26 June, 2003 / Orlando, Florida

For permission to copy or republish, contact the copyright owner named on the first page.
For AIAA-held copyright, write to AIAA Permissions Department,
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344.

AlAA 2003-4229

AUTOMATED CFD PARAMETER STUDIES ON DISTRIBUTED
PARALLEL COMPUTERS

Stuart E. Rogers: Michael J. Aftosmis!
Shishir A. Pandya! and Neal M. Chaderjian®
NASA Ames Research Center
Moftett Field, California

Edward T. Tejnil' and Jasim U. Ahmad!l
Eloret Institute
Moffett Field, California

Abstract

A software script system known as AeroDB has
been developed to automate the process of running
thousands of CFD cases on multiple distributed, het-
erogeneous, parallel computers. The software utilizes a
grid-computing infrastructure for a uniform interface
for compute-job submission and user authentication
to different compute platforms. The software con-
sists of several scripts written in the Perl programming
language, and a database server where all informa-
tion about each job is stored. In a seven-day period
AeroDB was used to run over 3000 cases in a parame-
ter study of the flow over a Langley-glide-back-booster
vehicle, using both an Euler and a Navier-Stokes flow
solver. Comparison of computed force coefficients with
experimental wind-tunnel data shows good agreement.

Introduction

As Computational Fluid Dynamics (CFD) tech-
nologies and software mature, and as computational-
resource costs continue to drop, it becomes possible
to use CFD methods to run large parameter studies.
Computational requirements for inviscid Euler CFD
solvers for a complete aerospace vehicle are on the or-
der of 5 to 20 hours on a high-end PC or workstation,
depending on the solver and the complexity of the ve-
hicle. Computational requirements for viscous CFD
solvers are typically 10 to 20 times that of an Fuler
solution. By taking advantage of parallel computing

* Aerospace Engineer. Associate Fellow ATAA.
TResearch Scientist. Senior Member AIAA
fAerospace Engineer. Member ATAA.

8 Research Scientist. Associate Fellow AIAA.
TResearch Scientist Engineer.

lISenior Research Scientist.

This paper is a work of the U.S. Government and is not subject to copy-
right protection in the United States.

1

platforms, it becomes possible to reduce the wall-clock
time per Euler solution to less than an hour. If enough
parallel computing platforms are available to a user, it
becomes possible to perform a large parameter study.
With this comes the possibility of using high-end CFD
analysis in a number of unique ways, including trade
studies and in building stability and control databases.

A typical large parameter study might involve exam-
ining 30 different angles of attack, 20 different Mach
numbers, and 5 different side-slip angles, each for a
number of different geometry configurations or control-
surface deflections. This example results in 3000 dif-
ferent flow conditions for each geometric configuration;
the number of CFD cases to be run could easily reach
into the tens of thousands, and require at least 100,000
CPU hours. Such a parameter study could then be
used for a number of things, including the develop-
ment of stability and control derivatives for the vehicle,
or to virtually “fly” the vehicle through the database.
An example of the latter is given by Woodson and
Bruner,! where they build a database of flow solutions
for an aircraft store, and then examine its motion for
a number of different release mechanisms from an air-

craft.

A number of difficulties arise when attempting to
run a large parameter study. Often a user must spend
time performing a number of mundane tasks for each
CFD job. These include pre-processing input files,
logging into the compute system and transferring the
input files, executing and monitoring the job, post-
processing, and archiving the solver output. In the
case of a viscous solver, time limitations in the queues
of the job scheduler often require that the CFD run
be resubmitted several times in order to accumulate
enough CPU time to converge to a steady state. This
can become a rather tedious full-time job when run-
ning more than a few jobs. The use of simple scripts
to perform most of these tasks will help when run-
ning a few dozen jobs. But when one wants to run

American Institute of Aeronautics and Astronautics

thousands of jobs, a more sophisticated processes is
required. This is particularly true when the compute
resources are spread out over a number of different
heterogeneous compute platforms at more than one
location.

One effort to facilitate the use of distributed het-
erogeneous compute systems (grid computing)? is cur-
rently a major focus under the NASA Computing,
Information and Communication Technologies (CICT)
Program, under the Computing, Networking, and
Information Systems (CNIS) Project. This grid-
computing effort is built upon the Globus® software.
Grid computing is based on the concept that one could
gain significant increases in computational throughput
by accessing any number of remote compute nodes
through a common job-submission mechanism. This
would enable a group to meet its peak computing-rate
needs without having to maintain peak-level comput-
ing resources locally, resources which might otherwise
become idle during off-peak usage. The Globus soft-
ware provides such a job-submission mechanism via a
command called globusrun. In addition to job sub-
mission, the Globus software provides secure services
for user authentication, remote shell execution, and
file transfers, via a Grid Security Infrastructure (GSI).
GSI versions of the secure shell and secure file copy
programs ssh and scp* are known as gsissh and gsiscp.
These commands enable secure, grid-based authenti-
cation and communication over an open network.

The objective of the current work is to build a proto-
type software system which will automate the process
of running CFD jobs on grid resources. The goal of
this system is to remove the need for user monitoring
and intervention of every single CFD job. It should en-
able the use of many different computers to populate a
massive run matrix in the shortest time possible. One
previous effort in this area is the ILab software.’ ILab
provides a general purpose capability for creating and
launching parameter studies. Because of its general-
ity, it does require a significant amount of user input
to customize it for the user’s particular application.
The current effort is an attempt to build a parameter
study capability which is customized to run specific
CFD flow solvers, such that the user does not have
to provide any information about how to run the flow
solver; they only have to provide the flow-solver inputs.
Additional desired capabilities for the system are per-
sistence and error recovery. For example, if a remote
computer crashes while a job is being run, knowledge
of this job will not disappear, and it can be resubmit-
ted to run elsewhere. Such a software system has been
developed in the current work, and is known as the
AeroDB script system.

The approach taken for the development of AeroDB
was to build several discrete modules. These include a
database, a job-launcher module, a remote-execution
module, a run-manager library, and a web-based user

2

portal. The details of the design of AeroDB are pre-
sented in the following section. The subsequent sec-
tions present details on the Cart3D%7 and Overflow®?
flow solvers used in the current simulations, on the
reusable launch vehicle (RLV) which is the used in the
current calculations, and on the results of the param-
eter study which was performed using AeroDB. The
paper concludes with a section on the lessons learned
in this effort, and ideas for future work in this area.

AeroDB Design

The AeroDB system consists of a number of com-
ponents, each with their own tasks. A flowchart of
the AeroDB design is shown in Fig. 1. At the cen-
ter of the flowchart is a database. The database is the
communication hub and the repository of all known in-
formation about each job. All other modules only pass
information to and from the database, not directly
with each other. The other modules include a job-
submission script, a job-launcher module, a remote-
execution module, a run-manager library, and a web
portal. All of the modules and scripts are written
in the Perl'® programming language using an object-
oriented design.

All communication with the database uses Perl
DBI'!, which provides a consistent database interface,
independent of the actual database being used. The
basic work-flow within AeroDB is as follows. The
user inputs the specific values for the wind-vector pa-
rameters (angle of attack, side-slip angle, and Mach
number) into the job-submission script and executes
it. The job-submission script creates a new entry into
the database for each case to be run, including the pa-
rameter values and location of input and output files.
The job launcher, which is always running and mon-
itoring the database, submits each individual job to
execute on a specific computer. When a job begins
execution on the computer, the remote-execution mod-
ule is started. This module obtains all information it
needs from the database and runs the flow solver. The
run-manager monitors the solver output and instructs
the flow solver to stop either when it determines that
the case has converged, or when the job is about to
exceed its alloted computing time. If the case does
not converge during this run, it will be restarted once
again by the job launcher. Further details of this pro-
cess and each of the AeroDB components is presented
in the following subsections.

Database

The database is the heart of the system; it is the
communication hub and repository of all information
about the job. The primary form of communication
between the AeroDB components is via the database.
In the current work, a MySql'? database is used. All
of the tables are initially built with a series of Perl

American Institute of Aeronautics and Astronautics

4 N\
User Portal
v'Web based Job Launcher
v'Displays database v'Job submission (globusrun)
contents/job status v'Resource planning
v'Restart/rerun Job
Inpu: Database
parIame ters, v'Maintains all job status and location
:Ilm v'Communication hub for all modules
re v'Interface through Perl DBI
locations
A4
Remote Exectuion Script
v'Database I/0
vFile Pre-staging Remote Compute
v'Edit flow solver inputs S)
Data v'Executes solver SV
Archive €7 v'Post-Processing Cart3D
v'File post-staging OVERFLOW
Run Manger Library
v'Monitors job status
v'Convergence detection
. J

Fig. 1 AeroDB flowchart.

scripts. Two types of information are stored in the
database tables: static and dynamic. The static ta-
bles contain information that does not change as jobs
are created and run. This includes information about
each compute host on which AeroDB can run jobs, the
user accounts available on those hosts, and informa-
tion about the flow solvers and their input and output
files. The dynamic tables contain information about
specific jobs, information that is created and updated
while the jobs are running. This includes specific para-
metric input values for each job, the job’s owner, the
current job status and run host, information about the
resource requirements for each job, the location of all
input and output files, and a log of all events that have
occurred for each job. There is also a dynamic table
which contains integrated force and moment data from
the final steady-state solution for each case.

3

Job Submission Script

The job-submission scripts are used to enter in-
formation about new jobs into the database. These
simple scripts are used to enter the basic information
about each job: the location of the input files, the size
of the job, the flow solver to use, and flow parameters
such as angle of attack, side-slip angle, and Mach num-
ber. The scripts enter many of the cases at once into
the database, although not all of the cases in the entire
parameter study need to be entered at once. The en-
tries are typically staggered such that several hundred
cases are added to the database at a time. Once the
cases are entered in the database, the Job Launcher
script automatically executes the jobs.

Job Launcher

The job launcher script (JL) is responsible for
launching all jobs for execution on an appropri-

American Institute of Aeronautics and Astronautics

ate remote compute resource. The JL runs as a
background process which repeatedly searches the
AeroDB database for any job whose status is “new”
or “restart”. All attributes of such jobs are obtained
from the database. The JL then determines the ap-
propriate remote host on which to execute the job.
This selection is made with the help of a broker ser-
vice, which is part of the grid infrastructure. Input for
the broker includes the resource requirements, such as
memory, number of CPUs, and computer time; as out-
put it provides the name of the host that is best suited
to compute this job in the least amount of wall-clock
time. The broker gathers information to do its job by
periodically querying all available hosts and storing in-
formation about their load and the number of jobs each
has queued for execution. The JL then passes certain
job attributes (such as memory, time limits, number
of processors, and remote host) as input to the globus-
run command. The globusrun process then launches
the job on the specified remote host via that host’s job
scheduler. The JL also is responsible for cleaning up
jobs once they have finished execution. This is merely
the task of removing all remaining temporary files on
a remote execution host with the use of a gsissh com-
mand.

The JL communicates back to the database and en-
ters some information in the tables. It stores the name
of the remote host and run directory on that host in
the jobs table. It sends entries to the log table to
record the launching and cleaning of each job.

Remote Execution Script

When a job on a remote host begins execution, it
starts running an AeroDB script known as the Re-
mote Execution Script (RES). The RES performs the
following sequence of operations: transfer of input files
to the remote host; pre-processing of the flow-solver
input; executing and monitoring of the flow solver;
post-processing the solver output files; and transfer
of the output files to a permanent storage host. An
entry for the database log table is sent to the database
after the successful completion of each of these steps.
Certain aspects of each of these steps are flow-solver
dependent, and thus a separate Perl module was cre-
ated for each flow solver. These modules provide the
flow-solver specific methods for performing these oper-
ations. For example, the grid generation could be op-
tionally performed on the remote host for the Cart3D
jobs. The ability to use a sequence of different solvers
and utilities, including different versions of the same
program, was built into the logic of the RES.

RES solver modules were designed to execute both
serial and parallel versions of the flow solvers. The
run-time monitoring of the solver is accomplished by
forking the execution of the solver. Thus the RES can
continually examine the forked process and check for
error conditions. The RES will also check for output

4

from the Run-Manager library to determine the sta-
tus of the flow solver, ie., whether it has converged,
run out of time, or is diverging. Thus the RES deter-
mines whether the job has fully completed, or needs to
be restarted, and it reports this back to the database.
The solver post-processing includes the force and mo-
ment integration and storage of integrated data in
the database. RES error checking, run-time excep-
tion handling, and job-status reporting to the database
makes it possible for the user to easily monitor each
job.

Run-Manager Library

The AeroDB effort included the development and
use of a Run-Manager (RM) library. This is a li-
brary of routines for monitoring the progress of the
flow-solver. This library is called by the flow solver
through an Application Programming Interface (API).
The library contains various utility tools that monitor
quantities such as wall-clock time, residuals, forces,
and moments. The flow solver can send these moni-
toring variables, or signals, through calls to the API.
The flow solver also specifies the desired convergence
criteria for each signal. These signals are analyzed
in the RM library and a status variable is returned.
This status variable indicates whether or not all sig-
nals have met the convergence criteria, and whether or
not the flow solver has enough time to continue run-
ning. Based on this status information, the solver can
be programmed to automatically monitor and stop it-
self.

The advantage of such tools for the flow solver is
that it can utilize these monitoring capabilities in an
automatic fashion with little or no user intervention.
This general purpose and extensible library provides
a much needed capability for large-scale and multi-
parametric design-space computations. The library is
flexible in that the utilities can be invoked at any time,
or at an interval of the flow-solver’s choice. It can
even run continuously in the background in a separate
compute thread or as a child process. When not mon-
itoring a quantity, this separate process can sleep until
the flow solver wakes it up to invoke any of its moni-
toring functions. The objective of this development is
to provide flow solvers with a set of general purpose
tools. In this initial implementation two types of con-
vergence monitoring have been implemented: residual
monitoring, and force monitoring.

Residual monitoring is the monitoring of signals that
are expected to approach zero as the flow solver con-
verges. Any number of residual norms ||R;|| are com-
puted in the flow solver and supplied to the library at
regular intervals. A residual signal is considered con-
verged when ||R;|| < €;, where ¢; is the user specified
tolerance for the i*" residual signal.

Force monitoring is the monitoring of force and mo-
ment signals which are expected to asymptotically ap-

American Institute of Aeronautics and Astronautics

proach a constant value as the flow solver converges
to a steady state. Any number of force or moment
signals P; are computed by the flow solver and sent
to the library at regular intervals. A force signal is
considered converged when it satisfies: AP; < ¢; over
a statistically adequate sample size.

Web Portal

The web portal provides an interface for the user to
see the status of each job in the database, and provides
a mechanism for re-running and restarting jobs. The
portal is password protected. Once logged on, a user
is presented with a summary of all the jobs in the
parameter study. The user can then access a page
with a summary of all of the jobs run under their user
login. A snapshot of one of these jobs pages is shown
in Fig. 2. Several operations can be performed from
this page. By clicking on a specific job ID, a page
with detailed information about that job is displayed.
This includes all job-attribute and input parameter
entries, all entries in the log table for that job, and the
computed aerodynamic forces and moments for that
job.

Four other operations can be performed from the
page for one or more of the jobs: re-run, restart,
stop, and delete. The re-run operation will change the
database status variable to “new,” which will cause the
job launcher to execute this job from initial conditions,
effectively throwing away any previously saved solu-
tion for this job. The stop operation will prevent the
job launcher from resubmitting this job. The restart
operation will change the database status variable to
“restart,” which will cause the job launcher to resub-
mit this job for further execution, restarting from the
previously saved solution. The delete operation will
remove all entries for the job from all tables in the
database.

Flow Solvers

Two flow solvers were used in the AeroDB cal-
culations, Cart3D®7 and Overflow®?. The Cart3D
code solves the Euler equations using unstructured
Cartesian meshes. Cart3D takes as input the triangu-
lated surface geometry and generates an unstructured
Cartesian volume mesh by subdividing the compu-
tational domain based upon the geometry, and any
pre-specified regions of mesh refinement. In this man-
ner, the space near regions of high surface curvature
contains highly refined cells, while areas away from the
geometry contain coarser cells. The intersection of the
solid geometry with the regular Cartesian hexahedra
is computed, and polyhedral cells are formed which
contain the swatch of surface geometry covered by the
Cartesian hexahedra. Cells interior to the geometry
are automatically removed. The solid-wall bound-
ary conditions for the flow solver are then specified

5

within these “cut-cell” polyhedra. The volume mesh-
ing procedure® is provably robust, and does not require
user intervention. The meshing scheme is extremely
fast (over 1 million cells-per-minute) and meshes are
usually created on-demand in the run script and not
stored after the computation has completed. Cart3D’s
solver is based on an explicit multi-stage procedure
with strong multigrid acceleration. Convergence of
this solver is comparable with the fastest multigrid
solvers in the literature.” Cart3D has been parallelized
to efficiently run on shared-memory computers using
standard OpenMP directives.

The Overflow®? code, which solves the Navier-
Stokes equations using a finite-difference formulation,
was the other flow solver used in the AeroDB cal-
culations. These calculations were run using central
differencing of the inviscid fluxes and a matrix dissi-
pation scheme, and using a diagonalized, approximate-
factorization, implicit solver. The Spalart-Allmaras
turbulence model was selected. The code was run from
initial conditions using full-multi-grid sequencing on
three levels, and was run to steady-state convergence
using three-level multi-grid acceleration. Two different
parallel versions of the Overflow code were used. On
machines with a shared-memory architecture a multi-
level parallelism'® (MLP) version was used. The MLP
code uses native UNIX directives, and two levels of
parallelism. The coarse-grained parallelism consists of
splitting the problems up into groups of zones, such
that each group contains nearly the same number of
grid points. On the fine-grained level, each group is
assigned a number of CPUs. These CPUs execute
the code’s DO loops in parallel. The performance of
the MLP version of Overflow has been shown to scale
linearly with increasing number of CPUs beyond 512
CPUs for large problems. Most of the current Over-
flow calculations used a total of 32 CPUs and 8 groups
(4 CPUs per group).

On distributed memory machines, a Message-
Passing Interface!* (MPI) version of Overflow was
used. Instead of relying on shared memory to pass
inter-zonal boundary condition data between zones,
this data is explicitly passed as a message between the
CPUs, using the MPI standard. Load balancing is ob-
tained by distributing the zones among all the CPUs.
Since the zones can be significantly different in size, a
CPU may be given just one zone, or multiple zones, or
just part of a zone.

LGBB Vehicle

The particular vehicle used in the current simu-
lations is a reusable launch vehicle known as the
Langley-Glide-Back Booster (LGBB). This vehicle is
being studied under NASA’s Space Launch Initiative
(SLI) program. Some experimental wind-tunnel data
is available for this geometry, providing a capability to

American Institute of Aeronautics and Astronautics

f”Ei.Ie gwt iiew éearc.ﬁ Gno Eom-q.nari:s .'.r.a.s.ks .i:ie.\.p

! 4= 3 [% hifa://127.0.0.1/~ ragers/cgi-hin/dly_cannect.cgi 2.8 ., f
i ﬁ ‘ S BeroDE S AeroDB_2 %y AeroDB_local S GCA Status 55 Time: 5. WebTADS 55 Wireless Login : . |
AeroDB Project 0001
Legend
Status Description No. of Jobs
precheck Avraiting check-in 0
new Avraiting first execution from job launcher 0
Avraiting remote execution in scheduler quene 7
runnhing Currently running on remote machine 5
Currently post-processing on remote machine 0
Avraiting restart from job launcher 0
solver completed Job has successfully completed 533
stopped Job has been stopped by user 1
aborted Fatal error has occured; user intervention required 1 Ul
Total jobs for this project 567 i
Click on Job ID button to see more details on a job
Re-Run Checked Jobs | Restart Checked Jobs | Stop Checked Jobs | Delete Checked Jobs I Back to Projects | Show Completed Jobs I Refresh I
Check JobID Sratus Updated Step Run Host NCPUs Solver Parameter(s)
I~ 2305 | quened 2002-09-1707:3645 0 chapmannasnasagov 16 cart3d openMP Mach — 2,00 Alpha - 19.00 Beta - 2.00
o2 |quened 2002-09-1707:35:16 0 chapmannasnasagov 16 cart?dopenm‘}’ ‘Mach = 200 Alpha = 16.00 Beta = 2.00
| _ a5 | queued 2002-09-1707:3035 0 chapmannasnasagov 16 > Mach = 200 Alpha --2.00 Beta - 200
| _ssas | quened 2002-09-1707:2350 0 chapmannasnasagov 16 Mach - 180 Alpha - 2200 Beta - 2.00
- 2930 | queued 2002-09-1708:07:09 1551 lomaxtnas.nasa.gov 32 Mach = 0.60 Alpha = 20.00 Beta = 4.00
[= |
[m |
| = |
[= |
™ 1503 | quene 1
IE-—-—-__ =
[& 9 E e | Document: Done (101 secs) e

Fig. 2 Web portal jobs page.

validate the CFD results. Figure 3 shows the LGBB
geometry used in the calculations, as well as the over-
set surface grids used by the Overflow solver. The
overset, grid system contains over 8 million grid points
and 34 separate zones. Figure 4 shows some cutting
planes through the Cart3D mesh used for the subsonic
cases. This mesh contains 1.4 million cells. A similar
mesh with 0.8 million cells was used for the super-
sonic cases. As can be seen in both of these figures,
the LGBB geometry used here includes the wing and
fuselage, vertical tail, and canards. The sting that was
used to mount the experimental model is also included.

Fig. 3 Overset surface grids on LGBB geometry.

6

American Institute of Aeronautics and Astronautics

Fig. 4 Cart3D mesh used for subsonic cases.

The input files supplied for the Overflow runs in-
clude the entire pre-processed grid files and the stan-
dard input file. This grid system was generated using
an automated script system from the Chimera Grid
Tools'®16 package and the Pegasus'? grid-joining pro-
gram. These input files totaled over 360 Mbytes of
data, thus file-transfer time between remote machines
is non-trivial. However, this was more efficient than
re-computing the same overset grids on the remote
compute nodes for each computational job. By con-
trast, the input files supplied for the Cart3D runs
contained only a surface triangulation of the geometry.
The Cart3d volume mesh generation was performed on
the remote compute node for each computational job.

An important consideration when utilizing hetero-
geneous compute systems is the data-file format. The
AeroDB system does not provide for any translation of
different types of data-file formats. Instead it was re-
quired that each computer be able to read FORTRAN
unformatted data in an IEEE 64-bit floating-point for-
mat using big-endian byte ordering. This is the stan-
dard on nearly all of the computers that were used in
the current work, except for the Linux PC machines
where little-endian byte ordering is the default. The
appropriate format was obtained on Linux PCs with
the use of a commercial compiler and an appropriate
compiler option which resulted in big-endian byte or-
dering for input and output.

Results

AeroDB was used to run a large parameter study
for the LGBB vehicle. For the Cart3d cases, 38 Mach
numbers were run, ranging from 0.2 to 6.0. Five dif-
ferent side-slip angles were run with values from 0.0
to 4.0 degrees, however, not all side-slip angles were
run for all Mach numbers. For each combination of
Mach number and side-slip angle, 25 angles of attack

7

were run from -5.0 to 30.0 degrees. In total, just over
3000 cases were targeted for Cart3D. Since the Over-
flow cases are over 10 times as expensive as the Cart3D
runs, only 320 cases were planned, all at subsonic Mach
numbers. Eight Mach numbers were planned for Over-
flow, ranging from 0.2 to 0.95, with five side-slip angles
from 0.0 to 4.0 degrees. For each of these, 8 angles of
attach were run from 0.0 to 20.0 degrees.

The cases were split up among seven different users.
For each specific job, the name of the user who owned
that job was stored in the AeroDB database. Each
user was executing their own instance of the JL script.
When a particular job was submitted to a remote sys-
tem, it was run using the account owned by that user.
However, not all seven users had accounts on all of the
compute systems. In its database, AeroDB kept track
of which hosts each user had an account on, and would
only submit a user’s job to run on a computer where
that user had an account.

For the purposes of reporting results to the
CICT/CNIS program, AeroDB recorded what it was
able to accomplish after seven days of execution.
The metric for the program was to demonstrate that
AeroDB could execute 1000 Cart3D jobs and 100
Overflow jobs in seven days. Within 72 hours over
1000 Cart3D cases and over 100 Overflow cases were
completed. At the end of seven days, 2863 Cart3D
cases had completed, and 211 Overflow cases had com-
pleted successfully. Many of these cases required mul-
tiple job submissions in order to obtain enough com-
puting time. A total of 5964 job submissions were suc-
cessfully completed. These compute jobs utilized 13
different compute resources at four different locations.
Table 1 shows the number of job submissions sent to
each compute resource, and the approximate number
of CPU hours used on each host. The four locations
listed in Table 1 are: NASA Ames Research Center
(ARC) at Moffett Field, California; NASA Glenn Re-
search Center (GRC) at Cleveland, Ohio; the National
Center for Supercomputing Applications (NCSA) at
University of Illinois at Urbana-Champaign; and the
Information Sciences Institute (ISI) at the University
of Southern California. In addition to the computers
listed in Table 1, three other compute resources were
used at ARC: an SGI Origin front-end machine was
used for all of the job launching, a linux PC was used
as the database and web server, and an SGI Origin was
used for mass storage of all input and output files. No
special-priority queues were used on any of the com-
puters.

The data in Table 1 shows that over 95% of the com-
puting time came from the computers at ARC, and
that very little speedup in the total elapsed time re-
quired for the parameter study was gained by running
some of the jobs at the other centers. The computers
at ARC are all part of the NASA Advanced Super-
computing (NAS) center at NASA Ames, which is the

American Institute of Aeronautics and Astronautics

Table 1 Job Distribution on Compute Hosts

Location Host Hardware/CPUs # of Jobs CPU Hrs
ARC chapman.nas.nasa.gov SGI 03K /1024 3489 25485
lomax.nas.nasa.gov SGI 03K /512 1074 15678
steger.nas.nasa.gov SGI 02K /256 477 8017
hopper.nas.nasa.gov SGI 02K /64 411 4702
evelyn.nas.nasa.gov SGI O2K/16 61 262
simak.nas.nasa.gov Sun Ultra/8 136 234
GRC sharp.as.nren.nasa.gov SGI 02K /24 126 1014
aeroshark.as.nren.nasa.gov Linux PC/128 70 976
NCSA modi4.ncsa.uiuc.edu SGI 02K /256 99 483
1S jupiter.isi.edu SGI 02K /8 21 212
Total 5964 57065

biggest computing center within NASA. In order to
make the grid-computing concept worthwhile to users,
one needs to gain significantly more computing power
than one could obtain by just getting an account at a
single computing center. And although there was no
advantage to relying on the grid-computing infrastruc-
ture in the current work, the goal of automating the
CFD process was definitely met.

Despite the success of the AeroDB approach, there
were a number of jobs which did not complete suc-
cessfully, and some manual intervention was required.
This happened in only a small percentage of the cases.
The web portal greatly simplified the user interven-
tion: all that was required was a few mouse clicks in
order to restart the job when an error occurred. Typi-
cal failure modes include network timeouts during job
submissions, and errors due to improper software in-
stallation on remote systems.

Lift Coet,

Fig. 5 Cart3D CL for zero side-slip.

In Fig. 5 a carpet plot of the lift coefficient (CL)
is plotted versus Mach number and angle of attack for
the Cart3D cases run with zero side-slip angle. This
one plot represents about 20% of the cases that were
run in seven days; each dot on the carpet plot repre-
sents the CL from one case. Figure 6 plots CL versus
angle of attack from the Cart3d and Overflow calcula-
tions along with the experimental values for the case of

8

zero slide-slip and a Mach number of 0.3. Good agree-
ment is seen between the Overflow and experimental
results, and that the Cart3D results are slightly higher.
The results from the CFD calculations performed by
AeroDB and more comparisons with experiment are
presented in a companion paper by Chaderjian et al.'®

1.25 7 | wm Cart3d
a1 Overflow

4| @ Experiment

0.75

Lift Coefficient
o
»
1

0.25

-0.25 -

T T T T T T T T T T T
-5 0 5 10 15 20
Angle of Attack

Fig. 6 CL versus angle of attack, Mach=0.3.

Conclusion and Future Work

AeroDB, an automated software system for running
large CFD parameter studies on distributed parallel
computers has been developed. AeroDB was success-
ful in running over 3000 CFD cases in seven days,
which required over 5900 job submissions to 13 com-
puters distributed at four different computer centers
across the country. The standardized security and
user authentication services greatly simplified this pro-
cess. A single standard method for job submission was
also useful, although the lack of enforced standards in
the local implementation of this software caused some

American Institute of Aeronautics and Astronautics

problems. It was observed that the total time to per-
form this parameter study was not greatly improved
due to the access to the remote compute centers; the
parameter study could have been completed in nearly
the same time using just the computers at the NAS fa-
cility at NASA Ames Research Center. This does not
detract from the fact that the specific functionality of
automatically running jobs at a number of distributed
computing centers was demonstrated, and could lead
to greatly enhanced throughput if more remote com-
pute resources were available.

Several improvements for AeroDB are planned.
These include the addition of another module which
would continuously monitor jobs in the database for
any error conditions. Certain errors that currently re-
quire user intervention could be automatically fixed by
this module. For example, if a remote compute host
crashed, or a network timed out while a job was being
submitted, it could detect this and then restart or re-
run the job. Other improvements are planned for the
process of submitting new jobs into the database. The
job-submission scripts will be replaced with a page on
the web portal, allowing the user to specify the pa-
rameters for the runs through a web page. Further
enhancements in this area could be gained with the
use of a neural-net controller which would choose the
specific parameter cases to be run within the a user
specified range of parameters. The controller could
adapt the cases to fill in the regions of higher gradi-
ents, and not run as many cases where the forces and
moments are smoothly varying. This would have the
potential to reproduce the carpet plot in Fig. 5 using
far fewer cases. Finally, significant additions in the
post-processing capability are needed to automate the
process of plotting the force and moment results stored
in the database.

Acknowledgments

The authors wish to thank Dr. Bandu N. Pamadi
of NASA Langley Research Center for supplying the
LGBB geometry and experimental data, and to Dr.
Reynaldo J. Gomez of NASA Johnson Space Center
for supplying some of the LGBB surface grids used in
this work.

References

! Woodson S. H. and Bruner, C. W. S., “Analysis of
Unstructured CFD Codes for the Accurate Prediction
of Aircraft Store Trajectories”, ATAA Paper 99-0123,
Jan. 1999.

2 Foster, I., “The Grid: A New Infrastructure for
21st Century Science,” Physics Today, Vol. 55, No. 2,
pp. 42-47, 2002.

3 Foster, I., and Kesselman, C., “Globus: A Meta-
computing Infrastructure Toolkit,” Int. J. Supercom-
puter Applications, Vol. 11, No. 2, pp. 115-128, 1997.

9

4 Barrett, J. D., and Silverman,
SSH, The Secure Shell: The Definitive Guide,
O’Reilly & Associates, Inc., Feb. 2001.

5 Yarrow, M., McCann, K. M., DeVivo, A., and
Tejnil, E., “Production-Level Distributed Parametric
Study Capabilities for the Grid,” NAS Technical Re-
port NAS-01-009, NASA Ames Research Center, 2001.

6 Aftosmis, M. M., Berger, M. J., and Melton, J. E.,
“Robust and Efficient Cartesian Mesh Generation for
Component-Based Geometry,” ATAA Paper 97-0196,
Jan. 1997; AIAA Journal, Vol. 36, No. 6, pp. 952—
960, June 1998.

" Aftosmis, M.J, Berger M.J., and Adomavicius, G.,
“A Parallel Multilevel Method for Adaptively Refined
Cartesian Grids with Embedded Boundaries,” ATAA
Paper 2000-0808, Jan. 2000.

8 Kandula, M. and Buning, P. G., “Implementation
of LU-SGS Algorithm and Roe Upwinding Scheme in
OVERFLOW Thin-Layer Navier-Stokes Code,” ATAA
Paper 94-2357, ATAA 25th Fluid Dynamics Confer-
ence, Colorado Springs, CO, June 1994.

9 Jespersen, D. C., Pulliam, T. H., and Buning, P.
G., “Recent Enhancements to OVERFLOW,” ATAA
Paper 97-0644, Jan. 1997.

10 Wall, L., Christiansen T., and Schwartz, L. R,
Programming Perl, O'Reilly & Associates, Inc., 2nd
Edition, September 1996.

1 Descartes, A and Bunce, T,
Programming the Perl DBI, O’Reilly & Associates,
Tnc., Feb. 2000.

12 Reese, G., Yarger, J. R., and King, T,
Managing and Using MySQL, O’Reilly & Associates,
Inc., 2nd Edition, Apr. 2002.

13 Taft, J. R., “Achieving 60 GFLOP/s on the
Production CFD Code OVERFLOW-MLP,” Parallel
Computing, Vol. 27, No. 4, pp. 521-536, 2001.

14 Jespersen, D. J., “Parallelism and OVERFLOW,”
NAS Technical Report NAS-98-013, NASA Ames Re-
search Center, 1998.

15 Rogers, S. E., Roth, K., Nash, S. M., Baker,
M. D., Slotnick, J. P., Whitlock, M., and Cao, H.
V., “Advances in Overset CFD Processes Applied to
Subsonic High-Lift Aircraft,” ATAA Paper 2000-4216,
Aug., 2000.

16 Chan, W. M., “The Overgrid Interface for Com-
putational Simulations on Overset Grids,” ATIAA Pa-
per 2002-3188, June 2002.

17 Suhs, N. E., Rogers, S. E, and Dietz, W. E. “PE-
GASUS 5: An Automated Pre-processor for Overset-
Grid CFD,” ATAA Paper 2002-3186, June 2002.

18 Chaderjian, N. M., Rogers, S. E., Aftosmis, M.
J., Pandya, S. A., Ahmad, J. U., Tejnil, E. T., “Auto-
mated CFD Database Generation for a 2nd Generation
Glide Back Booster,” ATIAA Paper 2003-3738, June
2003.

R.,

American Institute of Aeronautics and Astronautics

